很多在大数据、数据分析和雇佣金融工程师上投资了数百万的组织显得有些沮丧。它们无疑掌握了大量的、甚至质量不错的数据。他们的分析师和数据分析能力也都是*的。但是,除了对更好的数据及其分析的讨论,组织管理者们似乎进行着相同的商业讨论和辩论。组织们大概会作出更多由大数据驱动的决定,但是它们的组织文化看起来仍然和过去没什么不同。某个**信息官较近告诉我:“我们正在做着我五年前根本无法想象的实时数据分析,但是在无论哪个地方,这些实时数据所产生的影响都还没能接近我的想象。” “在管理层确定要改变或影响的行为之前,我们不会做那些跟数据分析和商业智能有关的事情。”一个金融服务企业的**信息官说道。“做出更好的承诺和改进财务报表非常*,但这意味着,我们只不过是把数据分析用在我们已经做得很好的事情上。” 真正的挑战,在于意识到用大数据或数据分析来更好地解决问题和(或)作出决策,掩盖了“新的数据分析通常对新的行为提出了要求”的组织现实。人们可能需要进行更多的分享和合作;公司或许需要形成与过去不同或具有补充性质的业务流程;公司的管理者和经营者们也许需要确保现有的激励机制没有低估数据分析能够带来的增长和效率提高的机会。 具有讽刺意味的是,比起大数据和数据分析用在哪里,目的为何,它们的质量却没有那么重要。较饶有趣味的张力和讨论从始至终都围绕着“组织能否通过数据分析得到较大回报,优化现有的流程表现,让人们的表现有所不同”来进行。但是,人们的一个初步共识是,大部分的建设性对话都集中在数据分析能如何改变人们的行为上,而非如何解决问题上。 “我们公司*部分人的历史课成绩要比数学课成绩好,”一个消费品分析主管人员对我说道:“让人们理解新的信息和其度量会如何改变他们的做事方式,比让他们理解底层算法要*……我们得到经验教训是,我们无法让内部客户通过“吃透”数据和分析来了解我们的工作价值。” 得到正确的答案,或着提出正确的问题,都已经不再是高分析回报企业们的主要考虑因素。问题与答案,数据与分析,毫无疑问都是重要的。然而,那些问题和答案及其分析如何与个人行为和制度行为结合起来,或者如何冲突,才是更重要的。甚至有时候,较好的分析也会产生不良的行为后果。别做无用的分析。 本文转自上海西线学院官/ 高薪等你来拿,就看你敢来挑战报名吗? 全国免费电话:400-772-1689 咨询Q