数据挖掘培训课程学费需要多少?多少钱? 大数据挖掘是近几年的热词,培训也不例外,培训课程费用多少不重要,重要的是你能在培训中学到多少知识?这样你的培训就有价值,有意义。 1.基础阶段: Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。hadoop mapreduce hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。 大数据存储阶段:hbase、hive、sqoop。 大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。 大数据实时计算阶段:Mahout、Spark、storm。 大数据数据采集阶段:Python、Scala。 大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。 2.大数据分析的几个方面: 1、可视化分析:可视化分析能够直观的呈现大数据特点,同时能够非常*被读者所接受,就如同看图说话一样简单明了。 2、数据挖掘算法:大数据分析的理论核心就是数据挖掘算法。 3、预测性分析:从大数据中挖掘出特点,通过科学的建立模型,从而预测未来的数据。 4、语义引擎:需要设计到有足够的人工智能以足以从数据中主动地提取信息。 5、数据质量和数据管理:能够保证分析结果的真实性。